\qquad
Precalculus Part I February 18, 2019

Purpose: In this problem set, you will be practicing factoring polynomials. Each style of factoring includes an example that we will work together and then a few practice problems. Finding the roots (or zeros) of a polynomial is a critical skill to be successful in calculus and has many applications in its own right.

Method: Greatest Common Factor

The first step in factoring is looking for common factors. If we pull out the greatest common factor first, the rest of the polynomial looks more simple.

For each of the polynomials below, factor out the greatest common factor.

1. $6 x^{4}-4 x^{2}+12 x$
2. $5 x^{3}-15 x^{2} y+125 x y$
3. $5-35 x$
4. $12 x^{2} y^{2}+15 x y^{2}$
5. $6 a^{4} b^{4}-4 a^{2} b^{2}+12 a b$

Method: Factoring by Grouping

Sometimes we don't have a greatest common factor for a WHOLE polynomial but by finding a greatest common factor for each group.

For each of the polynomials below, factor the polynomial by grouping.

1. $6 a c+3 b c+2 a d+b d$
2. $a^{3}+b a^{2}+a b+b^{2}$
3. $2 x^{2}-2 x y+3 y x-3 y^{2}$
4. $12 p^{3}-21 p^{2}+28 p-49$

Method: Difference of Squares

We can even group invisible terms together.
Factor the polynomials below:

1. $a^{2}-b^{2}$
2. $x^{2}-1$
3. $-x^{2}+16$
4. $9 x^{4}-4$
5. $5 x^{2}-6 y^{2}$

Method: Trinomials with Leading Coefficient of 1

Splitting the middle term in a trinomial can help us factor by grouping.
Factor the polynomials below by splitting the middle term:

1. $x^{2}+2 x y+y^{2}$
2. $a^{2}+12 a+27$

Helpful idea: The goal with factoring trinomials is to find two numbers which \qquad together to be the middle coefficient, and \qquad together to be the constant term.
3. $c^{2}-4 c-12$
4. $x^{2}-10 x+16$

